Climate shifts the interaction web of a marine plankton community
نویسنده
چکیده
Climatic effects in the ocean at the community level are poorly described, yet accurate predictions about ecosystem responses to changing environmental conditions rely on understanding biotic responses in a food-web context to support knowledge about direct biotic responses to the physical environment. Here we conduct time-series analyses with multivariate autoregressive (MAR) models of marine zooplankton abundance in the Northern California Current from 1996 to 2009 to determine the influence of climate variables on zooplankton community interactions. Autoregressive models showed different community interactions during warm vs. cool ocean climate conditions. Negative ecological interactions among zooplankton groups characterized the major warm phase during the time series, whereas during the major cool phase, ocean transport largely structured zooplankton communities. Local environmental conditions (sea temperature) and large-scale climate indices (El Niño/Southern Oscillation) were associated with changes in zooplankton abundance across the full time series. Secondary environmental correlates of zooplankton abundance varied with ocean climate phase, with most support during the warm phase for upwelling as a covariate, and most support during the cool phase for salinity. Through simultaneous quantitation of community interactions and environmental covariates, we show that marine zooplankton community structure varies with climate, suggesting that predictions about ecosystem responses to future climate scenarios in the Northern California Current should include potential changes to the base of the pelagic food.
منابع مشابه
REV IEW AND SYNTHES IS The biogeography of marine plankton traits
Andrew D. Barton,* Andrew J. Pershing, Elena Litchman, Nicholas R. Record, Kyle F. Edwards, Zoe V. Finkel, Thomas Kiørboe, and Ben A. Ward Abstract Changes in marine plankton communities driven by environmental variability impact the marine food web and global biogeochemical cycles of carbon and other elements. To predict and assess these community shifts and their consequences, ecologists are ...
متن کاملPlankton community properties determined by nutrients and size-selective feeding
The potential impacts of climate change on marine planktonic ecosystems remain difficult to predict. Climate forcing can alter nutrient availability and predator community composition, and here we show that these shifts may dramatically alter plankton trophic structure, size distributions and biomass. We modeled phytoplankton and zooplankton as a highly resolved size spectrum with size-dependen...
متن کاملInfluence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects
Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes-summarized by the term ocean acidification (OA)-can significantly affect the physiology of planktonic organisms...
متن کاملMarine plankton phenology and life history in a changing climate: current research and future directions
Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We ...
متن کاملMismatch between marine plankton range movements and the velocity of climate change
The response of marine plankton to climate change is of critical importance to the oceanic food web and fish stocks. We use a 60-year ocean basin-wide data set comprising >148,000 samples to reveal huge differences in range changes associated with climate change across 35 plankton taxa. While the range of dinoflagellates and copepods tended to closely track the velocity of climate change (the r...
متن کامل